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Reflection-induced spectral changes of the pulsed radiation emitted by a point source
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We calculate the field emitted by a pulsed point source above a planar interface. It is found that the observed
power spectrum can differ significantly from the emitted spectrum. Also, the observed power spectrum de-
pends strongly on the wave speeds in the two media and on the position of the observation point with respect
to the interface and the source.
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I. INTRODUCTION those of both the primary and the reflected waves. Because
of the difference in pulse shape in these three constituents,
The power density spectrum of the wave field that is ob-their spectral contents differ, with the consequence that the
served at a certain distance from its emitting source usuallpower density spectrum of the total wave motion that is ob-
differs from that of the source excitation. Examples of thisserved varies in a complicated fashion with the position of
are known in the fields of optics and acoustics. There arepbservation. Our analysis unravels the influence of the dif-
within the linear regime, at least five different mechanismsferent parameters on this phenomenon in a quantitative man-
that can cause this. First, we mention the Doppler effecher. The results are expected to be of importance in all those
which manifests itself when the source and the observer areases where conclusions are drawn from the measured power
in relative motion[1]. Second, when a pulsed wave propa-spectra associated with the irradiation of an object, for ex-
gates through an absorbing medium, the interplay of disperample, in those cases where the process of irradiation aims at
sion and absorptiofin accordance with the principle of cau- reconstructing certain parameters of the irradiated object.
sality) causes changes in the spectrum of the wave figld As will be demonstrated, the changes in the observed
Third, partially coherent sources give rise to so-calledpower spectrum can be quite significant. Not only do our
correlation-induced spectral changg3]. A fourth, and results establish interface reflection as a mechanism for spec-
closely related, mechanism is scattering by a random metral changes, they are also relevant for inverse scattering
dium. An overview of the last two processes and their constudies where the source excitation is to be reconstructed.
sequences for the wave field’s power density spectrum are The analysis of the pulse propagation in the two-media
described irf4] and[5]. In the present paper we study a fifth configuration is carried out with the use of the modified
cause of spectral changes, namely, reflection at an interfac€agniard techniqug6]. This method has been successfully
We analyze how reflection at a planar interface betweempplied in electromagnetid¢d,8], acoustic§9,10], and elas-
two media with different wave speeds changes the spectrutodynamics[11,12. In the present study we consider scalar
of a propagating wave emitted by a pulsed point source. Ouwave fields. In our numerical examples, the parameters are
analysis is carried out in the time domain, and yields analytitaken from acoustics. In addition, pulse time widths are cho-
cal expressions for the relevant Green’s functions. These asen such that within the spectral regime dispersion can be
convolved with the source excitation function to obtain theneglected.
observed wave field. A Fourier transform then yields the Our method of analysis yields closed-form time-domain
observed power spectrum. results for the generated wave motion. The analytic form of
In the model configuration at hand, the primary wave fieldthe relevant expressions has a number of advantages over
excited by the point source is a spherical wave. Its poweresults that are obtained with the aid of purely computational
density spectrum is, at each observation point in space, #chniques like the finite difference time-domaRDTD)
replica of that of the exciting source. The wave reflected ainethod. First of all, the singularities in the complex slowness
the interface has a spherical wave front with its center at thelomain expressions for the wave figthd these govern the
image of the source in the interface, but its amplitude andime behavior of the fieldare each directly associated with a
pulse shape no longer show a spherical symmetry, and thgyhysical phenomenon occurring in the wave motion. Sec-
change with the offsets of the point of observation parallelondly, explicit expressions for the system’s Green'’s function
and normal to the interface, and with the two wave speeds. lare obtained. Thirdly, since only integrations occur in the
addition, in the case where the medium against which reflecfinal expressions, the wave field can be computed with any
tion takes place has a wave speed that exceeds the one of §escribed accuracy. Fourthly, the computation time associ-
medium in which the wave motion is generated, head waveated with evaluating the resultingingle integral is negli-
occur in certain regions of space. Their wave front is a conigible compared with the computation times associated with
cal one and their amplitude and pulse shape deviate frorthree-dimensional FDTD methods. These properties make
the results of our method ideally suitable for benchmarking
other techniques, both in accuracy and in speed of computa-
*Corresponding author. Email address: tvisser@nat.vu.nl tion.
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h * Point Source causality conditioru(x,y,z,t)=0 for t<0 and all{x,y,z}.
As the boundary conditions to be satisfied across the inter-
o 5 D, face we take
1 limfug(z)+u(z)]=lim[uy(z)] forall{x,y}, (6)
z|0 z10
O x  Interface

lim[ d,ug(2) +d,us(z)]=lim[d,u,(z)] forall {x,y}.

“2 D, z|0 z10

7

FIG. 1. A point source above a planar interface. The source is "
located on thez axis at a distanck from the interface between the They are representative for the electric field components par-
two half space®,; andD,. Wave speeds in these two mediaage  allel to the interface in a configuration of dielectric media
andc,, respectively. and the acoustic pressure in a configuration of constant vol-

ume density of masg$which implies a difference in com-

As far as generalizations are concerned, we mention thatressibility in the two media
the modified Cagniard method also yields closed-form re- The incident wave field is the spherical wave
sults for the radiation from a point source in a discretely
layered mediun{13] as well as in a continuously layered Ug(X.Y,Z,t) = f(t—Ro/cy) for R\>0 ®)
medium[14-16, although in the latter case the results are olX.Ys 2, 4R, o
somewhat more complicated since reflection now takes place
continuously rather than discretely. In these configurationyVhereRo:[X2+y2+(Z—h)
the analysis of spectral changes can, therefore, take place L€t
along the lines of the present paper as well. Furthermore, "
extended sources can be handled with the same method, as f(s):f exp(—st)f(t)dt forRe (s)>0 9)
experience in elastodynamic problems has shfi. 0

2] 1/2_

be the one-sided causal Laplace transformation with respect

to t. Then, the power density spectrum of the source signa-
The two-media configuration under consideration consistgure is

of two half space®; andD, (see Fig. 1 To locate position .

in the configuration, orthogonal Cartesian coordinates I1(w)=10logyo( | (i w)[?), (10

{x,y,z} with respect to a fixed reference frame are used. The . : : . .
reference frame is chosen such that the half sgaceoin- wherew is the angular frequency, aridhe imaginary unit

cides with{z>0}, and the half spac®, with {z<0}. The  The diagram in which the quantity 10lgg| (i )/f(0)|?) is
point source is located 40,0h} with h>0. The time coor-  Plotted as a function of frequenay/27 is denoted as the
dinate ist. The wave speeds P, andD, are denoted by,  SPectral diagramEquation(8) leads to

andc,, respectively.

II. DESCRIPTION OF THE CONFIGURATION

The scalar wave m_otion is described by the wave function Ug(s)=T(s) M for Ry>0. (12)
u=u(x,y,zt). We write 4mRy
Up+U; inDy, Hence, the spectral diagram of the emitted wave coincides
u= u i D (1)  with that of the source signature. As we will show, this prop-
2 29

erty no longer holds for the reflected wawue.

In our examples, we shall use the “power-exponential”
where u, denotes the wave field incident on the interfacemodulated sinusoidal source signat{it&]
{z=0}, u, is the reflected wave field i®®;, andu, is the

transmitted wave field iD,. Let f=1f(t) be the pulse shape 0 fort=<0,
(“signature”) of the exciting point source; then the wave f(t)= at)” . fort=0
functions satisfy the following wave equatiogartial dif- Al | exp—attv)sin(wet) Tort=0,
ferentiation is denoted by the operat)r. 12
(95+ 0+ d5—cy 2o ug=—f(1) 8(x,y,z—h) forz>0, whereA is the amplitude of the pulse angl>0 the angular

(3)  frequency of its sinusoidal carrier, while the parameters
>0 andv>0 are related to the pulse rise timeand the
(95+ 05+ d5—cy0p)u;=0  forz>0, (4)  pulse time widtht,, of the modulating amplitude function
(envelope via

(95+dg+d5—c; 20 u,=0  forz<O. (5
t,=vla, (13
We assume thdt(t) =0 fort<<0. Then the wave motion that
is causally related to the action of the source satisfies the ty,=a v Vexpv)[(v+1), (14
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source signature R
u(x,y,z,s)=

%)ZJZ f: exp —isax—isBy)

X U(a,B,z,5)dadp. (17

1 ,~.~—— envelope
’ Ay

0.5

-0.5 .
re time (ms) — In this representationg and 8 are the so-called slowness

parameters. With this representation, we haye —isa,

FIG. 2. Source signature or pulse shape as given by(Ez). §y= —isB. As a result, the wave functions in the slowness
(solid ling) and its envelopédashed ling Source parameters are domain satisfy the equations
A=1, a=5.71X10° s7!, »=2, and wy/2mr=2 kHz. Corre-

0 ATz 3 4 5
\ \/\’\ .
R signatu

-1

sponding pulse rise time and time width are=0.35 ms and (95[,0_52),%0:_%(5) 8(z—h) forz>0, (18
t,=0.65 ms.
920, —s?y7u;=0 forz>0, (19

in which I" denotes the Euler gamma function. For this
source signature, we have

92u,—s?y3u,=0 forz<O0. (20)
- a\’ I'iv+1
Fs)=A —) ex;iv)(T) Here,
v ! _ -2 2 2\1/2 21
Y127 (Cro “Ha”+ B9 (22)
1 1
X — A—— with the square root chosen such that,>0 for all real
(s+a—iwg) (s+atiwo) values ofa and 8. The bounded solutions of these trans-
for Re(s)>0. (15) formed wave equations are written as
. . ~ ?(s)
Figure 2 shows the shape of Ed.2), and Fig. 3 the corre- Uo(a,B,2,9)= Fexp:_smz_hn for z>0,
1

sponding spectral diagram. (22)

Ill. THE MODIFIED CAGNIARD METHOD f s)
S

~ (
Ui(a,B,2,8)=R(a,B)s—exd —syi(z+h for z>0,
The reflection problem at hand will be solved with the ile.f.2,9) (a 3)2 71 HL=s7 )]

aid of the modified Cagniard method. The first step in (23
this method consists of subjecting tkeausal wave func-

tions to a one-sided Laplace transformation with transform  ~ f(s)
parametes: Ux(a,B,2,5)= ﬂa,ﬁ)ﬁ exf —s(yih—y,2)]

- for z<O, (29

G(x,y,z,s)=f exp(—st)u(x,y,z,t)dt. (16)
0 whereR(«,B) and 7(«,B) are the interface reflection and

transmission coefficients, respectively. From the application

We choosese R and large enough to ensure the existence off the boundary conditiongEgs. (6) and(7)] we obtain

the right-hand side. Under this transformatigs s. Further-

more, the spatial Fourier representationik,y,x,s) in the R(a,B)= LENN 72, (25)
coordinatesx and y parallel to the interface, scaled by a Y1t 72
factor of sis given by )
Y1
B)= . 26
source spectrum (dB) Na.p) Y1+ Y2 (26)

Note, in particular, thaR and7 remain bounded for all real

-10 values of the slowness parametersand 3, since for the

_20 chosen value ofy, , their denominator never vanishes. Sub-
stitution of Eqs.(22)—(24) into Eq.(17) leads to representa-

30 tions ofﬁo, fjl, andﬁz, respectively.

-4010‘_1 50 o The idea that is central to the modified Cagniard method

is to transform the Fourier representations of the reflected
and transmitted wave field&gs.(23) and(24)] into expres-
FIG. 3. Spectral diagrantnormalized to 0 dB of the source SIONS of a particular shape such that the transformation from

signature of Fig. 2. u(x,y,z,s) to u(x,y,z,t) can be carried out by inspection.

frequency (kHz) —
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[Note that, sincesin Eq. (16) has been chosen to be real and 2

N S o i ~
positive, we cannot rely on Fourier’s integral theorem for u(x,y,z,s)= Zf dqf o exp—psnu(l,q,z,s)dp.
this purposd. Taking into account the algebraic factorsof Ami) = e
andf(s) in the expression&2)—(24), we aim at representa- (39

tions of the type Furthermore, Eq(21) transforms into

U(x,y,2,5)=st(9)9(xy,2,5), @7 74P A)=[Q140) ~pH (36

in which the system’s Green'’s functigncan be cast into the

with
form

Q1 Aq)=(c1, 2+gH)¥>>0. (37

é(x,y,z,5)=f exp—s7)g(x,y,z,7)dr, (28 . . . . . .
Tarr Finally, the integrand in the integral with respect fois
continued analytically into the complexplane, away from

wherer is a real variable of integration. In view of Lerch’'s o imaginary axis. In this procedure, we keep Rel
theorem[19] on the uniqueness of the one-sided Laplace~ \hich implies that branch cuts are introduced along

transformation, the time-domain equivalent of E2jy) then {Im(p)=0,2, .<|Re(p)|<=}. To arrive at expressions of

follows as the type needed in E428), we can now deform the path of
u(x,y,z,t) integration in the complep plane, under the application of
Y Cauchy’s theorentwhich necessitates avoiding crossing the
0 for —oo<t<T,, branch cuts
_ ¢ In our further analysis, we will concentrate on obtaining
B 54 f(t—1g(x,y,z,7)dr for Ty<t<oe. the spectral diagram of the reflected wave in its dependence
arr on the position of observation and on the on-axis spectral
(29) diagrams of the reflected waves as a special case.
Evidently, T, can be identified as the arrival time of the IV. THE REFLECTED WAVE IN D,
relevant wave motion.
A comparison of Eq(28) with Egs. (17) and (22)—(24) On using Egs(23), (32), and(35 we obtain
shows thatr is related tow and 8 via .
- sf(s) (=
i(ax+By)+yi(z+h)=1 (30 uy(x,y,2,8)= 4772if _dg
for the reflected wave, and .
xflw exd —s(pr+ yH )]Mdp
i(ax+By)+ yih=y2=1 (3 i T 2
for the transmitted wave. As a consequence, to reach our (38)

goal we have to deviate from the real valuescofand g . . .
occurring in Eq.(17), which means that analytic continua- Where Hi=z+h (H,>0) is the vertically traversed dis-
tions into complex values are needed. For this, we proceed 4&Nce- The inner integration is along the imaginary axis of
follows. First, in Eq.(17), {a, 8} are replaced byZ,q} via (e cOmplexp plane. In accordance with Eq0) and (33)

we deform this path of integration into the modified Cagn-

a={cogh)—qsinh), iard path
B={sin(#)+qcog6), (32 pr+yiH;=7, (39

where x=r cos(@) and y=r sin(¢) with O0sr<w, 0<¢@  with 7 real and positive. For a fixed value ef we have
<2m. Under this transformationa®+ B8%2=¢2+q?> and either two complex conjugate solutions fpror two real-

dadB=d{dq, while valued ones. The first two are given by

ax+By={r. (33 pS"(r,Hi,q,7),

=) ABWx H (40)

Subject to Eq(32), Eq. (17) transforms into p1 o (r,H1,q,7),
. s \2 (= w _ where
u(x,y,z,s)=(ﬂ> J qu exp—i¢sru(Z,q,z,8)d<.

T r . Hy

(34 PPV i 5 [P TH() ]

Next, in the inner integralp=i{ is introduced as the vari-
able of integration. This leads to for T(g) <7<, (41
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FIG. 4. Modified Cagniard path in the complex slowness plane FIG. 5. Modified Cagniard path in the complex slowness plane
for c;>c,. Only a body-wave contribution is present. Both the for the case,>c,, and no head-wave contribution. Both the body-
body-wave part and the asymptote are shown. Dots indicate equivave part and the asymptote are shown. Dots indicate equidistant

distant time intervals. time intervals.
with part of the real axifIm(p)=0,—Q,(q)<Re(p)<Q,(q)}
comes into play as a second candidate for the modified
T(Q)=(r?+HH¥2Q(q). (420  Cagniard path. Details of this case will be discussed below.

Here, the superscri@W indicates body waves. This part,
the body-wave part, goes to infinity as—o and has the The casec,>c,
asymptotic form

As was explained above, in this case the point where the
pe" contour intersects the real axis lies between 0 and the
branch point(),(q) as defined in Eq37). Therefore, in this
case, only a body-wave contribution exists. Introducinas
the variable of integration along the modified Cagniard path
{p=pE"MU{p=pS"™*} in Eq. (38) leads to
From Eq.(493) it follows that these solutions can be used to
join the original path of integratiofthe imaginary axisvia
supplementing circular arcs at infinity. In view of Jordan’s
lemma, the latter yield a vanishing contribution. The point of
intersection of the modified Cagniard patp=p5*"iU{p
=p®"*1 and the reap axis occurs at-=T,(q) and is lo-
cated at

r+iH;
r2+H?

BW
P1

T asTt—oo, (43

_ rT.(q) (42 B
r2+H2

-
b

In the casec;>c, [where from Eq(37) Q4(q)<Q,(q) for

all q] this point lies to the left of the left most branch point
p=Q,(q). Since, furthermore, the integrand is free from
singularities between the imaginary axis and the modified
Cagniard path, the integral along the imaginary axis in Eq.
(38) can be replaced by the integral alofig=p:"}U{p FIG. 6. Modified Cagniard path in the complex slowness plane
= p?W*} (see Fig. 4 for the casec,>c,, and a head-wave contribution. The head-wave

In the casec;<c,, ,(q)>Q,(q) for all g, and devia- part, the body-wave part, and the asymptote are shown. Dots indi-
tions from this simple situation may occur. In this respect thecate equidistant time intervals.
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- f(s) (= o - sf(s) (=
ul(X,y,Z,S)Z > J’ dQJ Ul(X,y,Z,S): 2 dr
T 0 Ta(a) m= JT1(0)
A0 | R(ppY,q) aps?
R(p:",q) ap;" X exp(—s7) Im S al ’
X exp(—s7)Im o , 0 2yi(p1,q) o7
271(p1 1q) (?T

(46)

(45) from which A(7) follows, upon using Eq942) and(37) and
T(0)=(r?+H)¥c,, as

Alr)=

2 1\ 12
"t e

2 2 2
rc<Hji cf

where we have used the facts that the integrand is an even

function of g and that the integrand ip satisfies Schwarz's  \yjith this, we have arrived at the desired form as expressed
reflection principle of complex function theory. Interchang- by Egs.(27) and(28) and the response functia(x,y,z, )
ing the order of the integrations in E@l5) leads to follows from Eq.(46) by inspection as

0 for —oo<7<T4(0),

gi(xy,z,r)=9 1 fA(’)u R(pW,q) apPW
—_— m
2Jo 2y,(pFWV,q) 97

(48)

dg forT,(0)<r7<e.
T

Substitution of this Green’s function in ER9) completes [We note that Eq.(49) is the condition for total internal
the solution of the reflected field for this case. Evidently,reflection which accompanies the occurrence of head whves.
T,(0) can be interpreted as the arrival time of the wave upor_et T?W(q) be the value ofr corresponding to the branch
traveling from the image of the point source in the interfacepoint p=Q,(q); then

to the point of observation ;.

1/2
HW 1 1
The casec,<c, T1 () =Qo(q)r + 2 2 Hy, (52
Now, two situations can arise, depending on the point of v

observation.

(a) The body-wave modified Cagniard path crosses thavhere we used Eq$39) and (36). Now, the deformation of
real p axis to the left ofQ),(q). [Note that, sincec,>c;, the c_mgmal pat_h of integratiofthe |mag|n.ary.axhsmto the
Q,(0)<Q4(q); see Fig. 5 For this case the analysis is modified Cag_nlard path under the application of Cauchy’s
identical with that for the previous case. theorem requires the body-wave part to be supplemented by

(b) The modified body-wave path ends on the reaxis & |00p around the branch cut associated with(q), and
on the branch cut associated wiily(q). Inspection of Eq. 10ININg the points where the body-wave parts approach the

(44) shows that this happens in the region of space real p axis (see Fig. 6 The parametrization of this part in
accordance with Eq39) leads to

0>0 . =arcsinc,/c,), (49

p?W(r ’ H 1 T)
where we defined

Hy
=lim T— T2(q)— ]Y%+i6
510 I’2+Hi r2+Hf[ ra) !
sin(@)= ————, (50)
(r2+H$)Y for HyQ4(q) < 7<T4(q). (53)
with 0<® < 7/2, and for the finite range ig given by The superscripHW denotes head wavé&0]. (An interest-
ing historical account of head waves and their application in
1 1 1\ 12 seismology is given by Mintrop21].) The additional loop is
0<a<_ o7 —sin¥(©) - —2) =B. (51  given by{p=p"u{p=p!"*}. Introducingr as the vari-
cog0) | ¢ C able of integration in Eq(38) gives
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. %(s) (B T,(a) integration, which for the head-wave contribution of Esg)
uy(X,y,z,8)=— f dqf . EXP(—sT7) yields symbolically
v 0 Tl (a)
oW oW de JH(Q) q jTl(O) q J‘C(T)d +fD q fC(T)d
R q) ¢ q T= T q T a,
i (leWq> ) 0 0 gy oy Jo N
2y,(py",q) 97 (55
t(s) (= (= where
T f dqf
T 0 T1(q) , 1 1 1/2H1 2 12
Cn={|-—-|S5-=| —| -5 , 56
R(p:Y,a) ap" R Hr (c';’ 2] r cg} (58
Xexp —s7)Im 2B q) 97 dr,
v1(P1 »q 50 S 1 1 1/2(r2+H§)l/2 -
2 e cog®) -

where we have used the facts that the integrand is an even
function of g and that the integrand ip satisfies Schwarz’'s For the body-wave contribution of E¢64) we get the result
reflection principle. As before, we interchange the order ofobtained earlier in Eq46). So, finally,

( 0 for —oo< 7<THW(0),
1 (e | Rp!M™,q) api™W
- f Im (leWq PLl4q  for THW(0)<7<T,(0),
™ 0 271(p1 !q) ar
L e | RpEa) opi™
gixy.zn={ 7Ja@  [2y(pi",q) 97 (58)
1 (A@ | R(pFV.q) opfV
+ —Zf Im (plBWq) P1 dq for T,(0)<7<D,
mJo 2yi(pr @) 97
1 (A0 | R(pFW,q) opBW
—zf Im (plBWQ) i dqg forD<r<oo.
| 72Jo | 290(pBW.q) 97
|
This concludes the calculation of the Green’s function for . s¥(s) (= (=
this case. We observe that, according to E%f), in the u.(0,0z,s)= Zf f exd —syi(z+h)]
representation ofj;(x,y,z,7) three break points in time oc- 8w Je oo
cur. The first,r=T"(0), marks the arrival time of the head R(a,B)
waves. The second;=T,(0), marks the arrival of the body dadg. (59

wave. The thirdy=D, is induced by the derivation and has
no straightforward physical interpretation. Note that in the
interval T1(0)<7<D a head-wave contribution still persists,
and that in the intervaD <7<« only a body-wave contri-
bution occurs.

We note that in the integrand on the right-hand side the
variablese and 8 appear in the formv?+ 82 only. There-
fore, it is now advantageous to introduce the polar variables
of integrationx and ¢ via

a=k CO , 60
V. THE ON-AXIS RESPONSE <) (60

For the special case that the point of observation lies on B=xsin(y), (61)
the z axis, i.e., on the line through the point source perpen- . i

dicular to the interface, the analysis of the reflected fieldVith O<k<%= and Osy<2m. This vyields dadp
simplifies considerably and an analytic expression of the <dxd#, and
Green'’s function can be obtained. To see this, we substitute

x=y=0 into Eq.(17) and use Eq(23). This leads to y1dK)=(Cy 5+ k3, (62)
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o(7) (m_l) 0.02
o u(7) (Pa) 1
-0.01 [ 0.01
-0.02 |
-0.03 | 25 3 54 45 5 55 6
7 (ms) —
-0.04 -0.01
-0.05
-0.06 | -0.02
2 4 6 8 10

FIG. 8. Total field u(r) for the casec,=500 m/s, c,
T (ms) — =330 m/s. The source is a0 m,z=0.3 m. Observation point
isatr=1.5 m,z=0.05 m. In this case the direct wave arrival time

FIG. 7. Green’s functiorg,(7) for the casec;=1500 m/s,c, Tdlr 3.04 ms and the body-wave arrival t|an(0) 3.08 ms.
=330 m/s, and the source locatedratO m, z=0.3 m. Obser- Source parameters are,=27x1C° rad s, »=2, «=8.71
vation pointis ar=1.0 m,z=0.1 m. Body-wave arrival time is x10* s7!, t,=0.23 ms, and,,=0.42 ms.
at7=0.72 ms.

where we have used Eq®1) and(25). With this, Eq.(59)
reduces to

= RI(£#+99)Y]

. fi
Y1(K) = yo(K) u;(0,0z,8)= > (S;)
— N 8

RU= S 0+ ya(r) €3

Xexg —svyi(z+h)]d¢, (69

where we have expressed th®& is a function of (2
+9?)¥? only. To arrive at the form for the application of

(0,02, s)— si(s) f exd —sy,(z+h)]—= Rix ) Lerch’s theorem, we replace in the inner integral on the
ya(r) right-hand side the variablg by 7 via
(64)
yi(zth)=r. (70)

In order to arrive at the desired form as expressed by Egs.
(27) and (28) we carry out the transformation

This leads to
yi(k)(z+h) =7, (65) 2 1112
with 7 real and positive. This leads to {= -t . (72)
T P : (z+h)? c?
72 1 ; i
S (66)  With the Jacobian
(z+h)2 ¢
L o . . 74 T
Rewriting all functions in Eq(64) in terms of their depen- 5T o (72
dence onr yields T (z+h)*¢
( s) R(7) Under this transformation, E@69) takes the form
(00 S)— J’ —s7)——dr, (67)
z+h -
0.0 B sf(s)Jocd o R(7)
whereT4,=(z+h)/c;. Evide_ntly,Talrr is t_he arrival time of u;(0,02,8)= 2m2 Jo q To(a) exp( ST)z+h
the reflected wave at the poif,0z}. In view of Egs.(27)— )
(29 we find that the on-axis Green’s function for the re- 72 , 1 712d 73
ald i i X —-q°—— T,
flected field is now given by (2+h)? q ci
0 for —oo<t<T,,
0,0z,)=1 1 R(1) 6 M
90520 =1 = MU o T, <t<oo,
47 z+h a 1 172
. . . To(@)=(z+h)| g+ (74)
This result for the on-axis Green’s function for the reflected (oh
field may be compared with the one that results upon substi-
tutingr =0 into Eq.(34), i.e., Interchanging the order of integration, we obtain
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gi(7) (m™)
0.25

0.2 7= 711 (O)

0.15

0.1

0.05 \

-~

1 2 3 4 5 6 7 8
7 (ms) —

FIG. 9. Green’s functiorg,(7) for the casec;=330 m/s,c,
=1500 m/s. The source is at=0 m, z=0.3 m. Observation
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0.04
u(r) (Pa) 1
0.02 T = Tl(o)
4 \/ & 7 8
7 (ms) —
-0.02 Ll 1HW
-0.04
-0.06

FIG. 10. Total field u(r) for the casec;=330 m/s, c,
=500 m/s. Source is at=0 m, z=0.3 m. Observation point is
at r=1.5 m, z=0.05 m. In this case head-wave arrival time
THW=3.8 ms, direct wave arrival tim&3"=4.6 ms, and body-
wave arrival timeT,(0)=4.7 ms. Source parameters are as in

pointis atr=1 m, z=0.1 m. In this case head-wave arrival time Fig, g.

THW(0)=1.8 ms and body-wave arrival tim,(0)=3.3 ms.

: O R
u.(0,0z,8)= 27TZ(ZH])merexp( sT)R(7)dr
Qo(7)
< | Qo -7y e, @9
with
2 1 112
=l——"— 7
(=] i ci] (76)
Through the substitution
q=Qo(7)sin(¢) (77
it is found that
Qo(7) w2
J °<HQ&TH2—qﬁ’”%q=J‘ dy=m/2. (78)
0 0
Hence
. _ sf(s) (=
u;(0,0z,5)= mﬁwexq —s7)R(7)dr, (79

which is the same expression as in Egj7), but obtained in

a different manner. The Green'’s function time-domain result

is again given by Eq(68).

VI. NUMERICAL RESULTS

The numerical integrations and time convolutions result-

discontinuity and then tends to zero. We note that the func-
tion is negative(positive whenc,;>c, (c;<c,), in agree-
ment with the behavior of the reflection coefficielq.
(25)]. An example of the total fieldi.e., the direct plus the
reflected fieldsu(r) is given in Fig. 8.

In the previous two examples;>c,. Upon interchang-
ing the two wave speeds, head waves may occur. In that case
the Green'’s functiom, () is given by Eq.(58). An example
is depicted in Fig. 9. At the head-wave arrival time
=TTW(0) the function is continuous and increases to a sharp
maximum at the body-wave arrival time=T,(0). Thetotal
field u(7) for the case when head waves are present is de-
picted in Fig. 10. The contribution of the head wave is
clearly visible before the arrival of the direct wave. When the
point of observation is moved further away from the point
source the separation between the head-wave and the body-
wave contributions becomes even more distinct. The case in
point is illustrated in Fig. 11.

0.004

U(T) (Pa) T 0.002 T= Tl (0)

1wy 15 16

-0.002 7 (ms) —

L pEW
oo0a] T=T1

-0.006

-0.008

-0.01

FIG. 11. Total field u(7) for the casec,;=330 mi/s, c,

ing from the modified Cagniard method were carried out—50g m/s. Source is at=0 m, z=0.3 m. Observation point is

with the help of routine®01AJF and Co6FKF of the NAG soft-
ware library[22]. First we consider the casg>c,, which

atr=4.5 m,z=0.05 m. Notice that the head-wave contribution is
separated from the body-wave contribution. In this case head-wave

implies that there are no head waves. An example of th@rrival time T!W=9.79 ms, direct wave arrival timeTd"

Green’s functiong,(7) as given by Eq.(48) is shown in
Fig. 7. At the body-wave arrival time=T,(0) it has a jump

=13.66 ms, and body-wave arrival tim&;(0)=13.68 ms.
Source parameters are as in Fig. 8.
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~= 900
-

FIG. 12. Green'’s function at a fixed observation point as a function of time,ayjtthe wave speed in the second medium, a parameter.
Source is at=0 m, z=0.3 m. Observation point is a=0.5 m,z=0.1 m. Wave speed in the first mediumcis=330 m/s.

The transition of a Green'’s function of the kind given by increasingc,. From a certain value of, onwards—at this
Eg. (48) to one as given by Eq58) is shown in Fig. 12. particular observation point—head waves appear. This is ac-
Here the Green’s function at a fixed point of observation iscompanied by the continuous onset of the Green’s function
depicted as a function of time, witly, the wave speed in the prior to the discontinuity associated with the arrival of the
second medium, a parameter. In the casec,, the Green’s reflected body wave. Also, from the onset of the head waves
function is negative and its amplitude decreasex.a-  on, its arrival time starts to decrease with increasing
creases. Foc,=c; it vanishes identically. Foc,>c;, its An example of the extent of the direct and reflected wave
sign becomes positive and its amplitude becomes larger witfronts in the half spac®; as calculated with Eqg$29) and
(58) is shown in Fig. 13. It is noted that the direct wave has
z (m) a spherical wave front, whereas the head wave has a conical

observed spectrum (dB)
12

o 1/At

-10+

0.8 -20 1

. -30 1
0.6 direct wave

@ source
0.4

L 1

2 3 4 5 6
frequency (kHz) —

40k
01

0.2 FIG. 14. Part of the observed normalized power spectrum for
head wave on-axis observation. Source is located &0 m, z=0.25 m, and
the observation point is at=0 m, z=1.25 m. Wave speeds are
02 04 06 08 1 12 c,;=250 m/s,c,=800 m/s. Resulting time delay between the ar-
r (m) = rivals of the direct wave and the reflected wavelis=2 ms. As
mentioned in Sec. VI, the spacing between the minima should be
FIG. 13. Position of the wave front &t 2.238 ms for the case 1/At=0.5 kHz, as is indeed the case. Source parameterg@re
¢;=330 m/s, c,=1200 m/s. Source is located a=0 m, z  =47x10° rad s}, v=2, #=8.71x10°> s, t,=0.23 ms, and

=05 m. t,=0.42 ms.
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source signal

(a)

observed signal

3 4 5
time (ms) —

5

04
0.05 /\ /\ (c

1 3 e
-0.05 time (ms) —
-0.1

observed signal

0.1
0.05 /\ (e)
AN
1 3 \V 4 5
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0.1

observed signal
0.1

0.05

-0.05

-01

observed signal
0.1

0.05

(g)
'Ns/\ /\Y 5

time (ms) —

-0.05

-0.1

FIG. 15. Source signdb) and its normalized power spectruim. Observed signal and its corresponding power spectrum are shown for
different wave speeds in the second medium. In all cages330 m/s, arrival time of the direct wave 1s=3.05 ms, and arrival time of
the reflected body wave is=3.39 ms. Forc,=200 m/s, there are no head waues); for c,=
=3.36 ms(e,f); for c,=800 m/s, the head waves arriverat 2.63 ms(g,h); for c,=1200 m/s, the head waves arriverat2.29 ms(i,j).
Source parameters ar@/2m=2%x10° rad s!, v=2, a=8.71x1C¢ s %, t,=0.23 ms, andt,=0.42 ms. Source is located at

(i)
3/\ /\h/ 5

time (ms) —
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0
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0
-10 (h)
-20
-30 /\
40 E 0
10 10

0
frequency (kHz) —

observed spectrum (dB)

oy,

frequency (kHz)

=0 m, z=0.3 m and the observation point israt 1.0 m,z=0.2 m.
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source spectrum (dB)
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10l
201
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1
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frequency (kHz) —

-40

observed spectrum (dB)
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0l
20!

-30¢F

-40

- 1
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frequency (kHz) —

observed spectrum (dB)
0

10 ®)
-20
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-40 -1 0 1
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frequency (kHz) —
observed spectrum (dB)

10
frequency (kHz) —

FIG. 16. Source signgh) and its normalized power spectral dendity. Observed signal and its corresponding power spectral density
are shown for different observation points in the first medium. Observation pomt@t2 m,z=0.1 m. Head-wave, direct-wave, and
body-wave arrival times are 1.35 ms, 0.86 ms, and 1.36 ms, respectoydly Observation point at=0.6 m, z=0.1 m. Head-wave,
direct-wave, and body-wave arrival times are 1.85 ms, 1.92 ms, and 2.19 ms, respe@ifjelpbservation point at=1.0 m, z
=0.1 m. Head-wave, direct-wave, and body-wave arrival times are 2.35 ms, 3.09 ms, and 3.26 ms, respgtiivéiyall casesc;
=330 m/s,c,=800 m/s. Source is located e=0 m, z=0.3 m. Its parameters are those of Fig. 15.

wave front. It was verified that the sine of the angle betweeriime delay between the arrival times of the direct field and

the head wave front and the interface indeed eqoals,.

the reflected field. The spacing was found to be in excellent

As a further test we examined the observed power spe@agreement with this prediction.

trum under on-axis propagation and reflection. The result,

How the observed signal can differ from the signal that is

shown in Fig. 14, reproduces the well-known effect fromemitted by the source is illustrated by Fig. 15. The source
spectral interferometry23]: the minima are equally spaced signal and its normalized power spectrum are show@,b.

and the spacing between them equalstlivhereAt is the

The observation point is kept fixed angl the wave speed in
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observed spectrum (dB) flection function in the final time convolution of the total
wave motion by its value at the arrival time of the reflected

0 wave. Correspondingly, the reflected wave function is ap-
proximated by
-10 |
f(t—Ty)
~ 20—~
o0l u;=R(rT,/R7,0) anR, (80)
-30 | . . N . .
(“first-motion approximation”, in which Ry = (r?+H?%)1/2
: is the distance from the point of observation to the image of
-40 1 2 3 4 5 6 7 8 9 10 11 the_ source in the reflecting boundary ahg=R;/c, is the
arrival time of the reflected body wayef. Eq. (44) for g
frequency (kHz) — =0]. Together with Eq(8) we then have
FIG. 17. Observed normalized power spectrum according to the f(t—To) f(t—T,)
modified Cagniard methodolid line, Eq.(48)] and the short-pulse U= — 9% +R(rT1/R2,O)—1, (82)
approximatiofdashed line, Eq83)]. The point of observation is at 4mRg 4R,

r=0.3 m, z=0.05 m. Wave speeds are,;=330 m/s, c,

=507 m/s. Source is locatediat0 m, z=0.3 m. Its parameters . . . . . .
area=36.71x10° s %, »=6, andwy/2mr=2 KHz. in which To=Rg/c, is the arrival time of the direct wave.

With this result we have

the medium against which reflection takes place, is varied.

Changingc, varies the values of the reflection coefficidat . . exp(—sTp) , exp(—sT)

and the arrival time ofpossibl@ head waves. Even whenno  U(s)=f(s) “IaR. +R(rT,/R ’O)W

head waves are presdtd), the observed normalized power 0 ! (82)

spectrum differs significantly from that of the source. Upon

increasingc,, the interplay between head wave, body wave,

and direct wave alters the shape of the observed signal arfefom this, the quantity needed for the spectral diagram fol-

its power spectrum even mofte). It is noted that the maxi- lows as

mum of the power spectrum is no longer at the carrier fre-

quencywgy/27 (f). In the casege,f) the head wave arrives

after the direct wave. Upon further increasiogthe arrival ~ 20 1\ [ROTLRLO)\?

: ' . . u(i)|?=f(iw)|?

time of the head waves decreases, and they arrive earlier thaln [ (477R0) ( 47R, )

the direct waveg,i). Also, the indentations in the observed )

power spectrum become much more pronoun¢egl. 2( 1 )(R(le/R 0)
The dependence of the observed power spectrum on the 4R, 4R,

position of the point of observation is illustrated in Fig. 16.

In this example the source signal and its power spectrum are

again those of Fig. 15. Upon changing the point of observa-

tion, the arrival times of the direct, head, and body waves ar¢ is noted that the short-source-pulse approximation is in

altered. Also, the time delay between them changes. Even fefccordance with ray-theoretical results in that the pertinent

an observation point relatively close to the soufcg) the  amplitude of the reflected body wave is given by the Fresnel

observed power spectrum already differs significantly fromreflection coefficient at the reflection point at the boundary in

the source spectrum. When the point of observation is movegdccordance with Snell’s law, while showing the divergence

away from the source, the onset of the head wave takes plaggctor associated with the point source’s image in the bound-

earlier(e,9, and the observed spectifch) deviate even more ary. As such it is of heuristic value. However, beyond the

from the emitted spectrurtb). range of validity of the relevent approximation the complete,
We emphasize that the spectral changes that we have caxact theory as developed in this paper has to be used. As an

culated cannot be attributed to any of the four other meChBexamp|e of such a case, we consider the spectral diagram of

nisms that are mentioned in Sec. | but are purely reflectionhe total wave for a source pulse with a pulse time width

induced. t,=0.169 ms. Exact results and the predictions of the short-

source-pulse approximation are shown in Fig. 17. Even

though the pulse time width is considerably less than the

direct-wave arrival time T3"=1.18 ms) it is seen that the
For short source pulses, i.e., for pulses whose spatial exshort-pulse approximation is in very poor agreement with

tent is small compared to the other spatial distances inthe exact result as obtained with the modified Cagniard

volved, we can approximate the body-wave time-domain reformalism.

)cos{w(Tl—To)]}.
(83

VII. SHORT-PULSE APRROXIMATION
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VIll. CONCLUSIONS the half space at which the field is reflected. Also, the loca-

We have calculated the effect of reflection on the field oftlon of the point of observation affects the spectrum.

a pulsed point source using the modified Cagniard technique. ACKNOWLEDGMENTS
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