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Reflection-induced spectral changes of the pulsed radiation emitted by a point source
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We calculate the field emitted by a pulsed point source above a planar interface. It is found that the observed
power spectrum can differ significantly from the emitted spectrum. Also, the observed power spectrum de-
pends strongly on the wave speeds in the two media and on the position of the observation point with respect
to the interface and the source.
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I. INTRODUCTION

The power density spectrum of the wave field that is o
served at a certain distance from its emitting source usu
differs from that of the source excitation. Examples of th
are known in the fields of optics and acoustics. There
within the linear regime, at least five different mechanis
that can cause this. First, we mention the Doppler eff
which manifests itself when the source and the observer
in relative motion@1#. Second, when a pulsed wave prop
gates through an absorbing medium, the interplay of disp
sion and absorption~in accordance with the principle of cau
sality! causes changes in the spectrum of the wave field@2#.
Third, partially coherent sources give rise to so-cal
correlation-induced spectral changes@3#. A fourth, and
closely related, mechanism is scattering by a random
dium. An overview of the last two processes and their c
sequences for the wave field’s power density spectrum
described in@4# and@5#. In the present paper we study a fif
cause of spectral changes, namely, reflection at an interf

We analyze how reflection at a planar interface betw
two media with different wave speeds changes the spect
of a propagating wave emitted by a pulsed point source.
analysis is carried out in the time domain, and yields anal
cal expressions for the relevant Green’s functions. These
convolved with the source excitation function to obtain t
observed wave field. A Fourier transform then yields t
observed power spectrum.

In the model configuration at hand, the primary wave fie
excited by the point source is a spherical wave. Its pow
density spectrum is, at each observation point in spac
replica of that of the exciting source. The wave reflected
the interface has a spherical wave front with its center at
image of the source in the interface, but its amplitude a
pulse shape no longer show a spherical symmetry, and
change with the offsets of the point of observation para
and normal to the interface, and with the two wave speeds
addition, in the case where the medium against which refl
tion takes place has a wave speed that exceeds the one
medium in which the wave motion is generated, head wa
occur in certain regions of space. Their wave front is a co
cal one and their amplitude and pulse shape deviate f
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those of both the primary and the reflected waves. Beca
of the difference in pulse shape in these three constitue
their spectral contents differ, with the consequence that
power density spectrum of the total wave motion that is o
served varies in a complicated fashion with the position
observation. Our analysis unravels the influence of the
ferent parameters on this phenomenon in a quantitative m
ner. The results are expected to be of importance in all th
cases where conclusions are drawn from the measured p
spectra associated with the irradiation of an object, for
ample, in those cases where the process of irradiation aim
reconstructing certain parameters of the irradiated object

As will be demonstrated, the changes in the obser
power spectrum can be quite significant. Not only do o
results establish interface reflection as a mechanism for s
tral changes, they are also relevant for inverse scatte
studies where the source excitation is to be reconstructe

The analysis of the pulse propagation in the two-me
configuration is carried out with the use of the modifi
Cagniard technique@6#. This method has been successfu
applied in electromagnetics@7,8#, acoustics@9,10#, and elas-
todynamics@11,12#. In the present study we consider sca
wave fields. In our numerical examples, the parameters
taken from acoustics. In addition, pulse time widths are c
sen such that within the spectral regime dispersion can
neglected.

Our method of analysis yields closed-form time-doma
results for the generated wave motion. The analytic form
the relevant expressions has a number of advantages
results that are obtained with the aid of purely computatio
techniques like the finite difference time-domain~FDTD!
method. First of all, the singularities in the complex slowne
domain expressions for the wave field~and these govern the
time behavior of the field! are each directly associated with
physical phenomenon occurring in the wave motion. S
ondly, explicit expressions for the system’s Green’s funct
are obtained. Thirdly, since only integrations occur in t
final expressions, the wave field can be computed with
prescribed accuracy. Fourthly, the computation time ass
ated with evaluating the resulting~single! integral is negli-
gible compared with the computation times associated w
three-dimensional FDTD methods. These properties m
the results of our method ideally suitable for benchmark
other techniques, both in accuracy and in speed of comp
tion.
©2001 The American Physical Society03-1
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As far as generalizations are concerned, we mention
the modified Cagniard method also yields closed-form
sults for the radiation from a point source in a discret
layered medium@13# as well as in a continuously layere
medium @14–16#, although in the latter case the results a
somewhat more complicated since reflection now takes p
continuously rather than discretely. In these configurati
the analysis of spectral changes can, therefore, take p
along the lines of the present paper as well. Furtherm
extended sources can be handled with the same metho
experience in elastodynamic problems has shown@17#.

II. DESCRIPTION OF THE CONFIGURATION

The two-media configuration under consideration cons
of two half spacesD1 andD2 ~see Fig. 1!. To locate position
in the configuration, orthogonal Cartesian coordina
$x,y,z% with respect to a fixed reference frame are used. T
reference frame is chosen such that the half spaceD1 coin-
cides with$z.0%, and the half spaceD2 with $z,0%. The
point source is located at$0,0,h% with h.0. The time coor-
dinate ist. The wave speeds inD1 andD2 are denoted byc1
andc2, respectively.

The scalar wave motion is described by the wave funct
u5u(x,y,z,t). We write

u5H u01u1 in D1 ,

u2 in D2 ,
~1!

~2!

where u0 denotes the wave field incident on the interfa
$z50%, u1 is the reflected wave field inD1, andu2 is the
transmitted wave field inD2. Let f 5 f (t) be the pulse shap
~‘‘signature’’! of the exciting point source; then the wav
functions satisfy the following wave equations~partial dif-
ferentiation is denoted by the operator]):

~]x
21]y

21]z
22c1

22] t
2!u052 f ~ t !d~x,y,z2h! for z.0,

~3!

~]x
21]y

21]z
22c1

22] t
2!u150 for z.0, ~4!

~]x
21]y

21]z
22c2

22] t
2!u250 for z,0. ~5!

We assume thatf (t)50 for t,0. Then the wave motion tha
is causally related to the action of the source satisfies

FIG. 1. A point source above a planar interface. The sourc
located on thez axis at a distanceh from the interface between th
two half spacesD1 andD2. Wave speeds in these two media arec1

andc2, respectively.
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causality conditionu(x,y,z,t)50 for t,0 and all$x,y,z%.
As the boundary conditions to be satisfied across the in
face we take

lim
z↓0

@u0~z!1u1~z!#5 lim
z↑0

@u2~z!# for all $x,y%, ~6!

lim
z↓0

@]zu0~z!1]zu1~z!#5 lim
z↑0

@]zu2~z!# for all $x,y%.

~7!

They are representative for the electric field components
allel to the interface in a configuration of dielectric med
and the acoustic pressure in a configuration of constant
ume density of mass~which implies a difference in com
pressibility in the two media!.

The incident wave field is the spherical wave

u0~x,y,z,t !5
f ~ t2R0 /c1!

4pR0
for R0.0, ~8!

whereR05@x21y21(z2h)2#1/2.
Let

f̂ ~s!5E
0

`

exp~2st! f ~ t !dt for Re ~s!.0 ~9!

be the one-sided causal Laplace transformation with res
to t. Then, the power density spectrum of the source sig
ture is

I f~v!510log10~ u f̂ ~ iv!u2!, ~10!

wherev is the angular frequency, andi the imaginary unit.
The diagram in which the quantity 10log10(u f̂ ( iv)/ f̂ (0)u2) is
plotted as a function of frequencyv/2p is denoted as the
spectral diagram. Equation~8! leads to

û0~s!5 f̂ ~s!
exp~2sR0 /c1!

4pR0
for R0.0. ~11!

Hence, the spectral diagram of the emitted wave coinci
with that of the source signature. As we will show, this pro
erty no longer holds for the reflected waveu1.

In our examples, we shall use the ‘‘power-exponentia
modulated sinusoidal source signature@18#

f ~ t !5H 0 for t,0,

AS at

n D n

exp~2at1n!sin~v0t ! for t>0,

~12!

whereA is the amplitude of the pulse andv0.0 the angular
frequency of its sinusoidal carrier, while the parametersa
.0 andn.0 are related to the pulse rise timet r and the
pulse time widthtw of the modulating amplitude function
~envelope! via

t r5n/a, ~13!

tw5a21n2n exp~n!G~n11!, ~14!

is
3-2
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in which G denotes the Euler gamma function. For th
source signature, we have

f̂ ~s!5AS a

n D n

exp~n!
G~n11!

2i

3F 1

~s1a2 iv0!n11
2

1

~s1a1 iv0!n11G
for Re~s!.0. ~15!

Figure 2 shows the shape of Eq.~12!, and Fig. 3 the corre-
sponding spectral diagram.

III. THE MODIFIED CAGNIARD METHOD

The reflection problem at hand will be solved with th
aid of the modified Cagniard method. The first step
this method consists of subjecting the~causal! wave func-
tions to a one-sided Laplace transformation with transfo
parameters:

û~x,y,z,s!5E
0

`

exp~2st!u~x,y,z,t !dt. ~16!

We choosesPR and large enough to ensure the existence
the right-hand side. Under this transformation] t5s. Further-
more, the spatial Fourier representation ofû(x,y,x,s) in the
coordinatesx and y parallel to the interface, scaled by
factor of s is given by

FIG. 2. Source signature or pulse shape as given by Eq.~12!
~solid line! and its envelope~dashed line!. Source parameters ar
A51, a55.713103 s21, n52, and v0/2p52 kHz. Corre-
sponding pulse rise time and time width aret r50.35 ms and
tw50.65 ms.

FIG. 3. Spectral diagram~normalized to 0 dB! of the source
signature of Fig. 2.
04660
f

û~x,y,z,s!5S s

2p D 2E
2`

` E
2`

`

exp~2 isax2 isby!

3ũ~a,b,z,s!dadb. ~17!

In this representation,a and b are the so-called slownes
parameters. With this representation, we have]̃x52 isa,
]̃y52 isb. As a result, the wave functions in the slowne
domain satisfy the equations

]z
2ũ02s2g1

2ũ052 f̂ ~s!d~z2h! for z.0, ~18!

]z
2ũ12s2g1

2ũ150 for z.0, ~19!

]z
2ũ22s2g2

2ũ250 for z,0. ~20!

Here,

g1,25~c1,2
221a21b2!1/2, ~21!

with the square root chosen such thatg1,2.0 for all real
values ofa and b. The bounded solutions of these tran
formed wave equations are written as

ũ0~a,b,z,s!5
f̂ ~s!

2sg1
exp@2sg1uz2hu# for z.0,

~22!

ũ1~a,b,z,s!5R~a,b!
f̂ ~s!

2sg1
exp@2sg1~z1h!# for z.0,

~23!

ũ2~a,b,z,s!5T~a,b!
f̂ ~s!

2sg1
exp@2s~g1h2g2z!#

for z,0, ~24!

whereR(a,b) and T(a,b) are the interface reflection an
transmission coefficients, respectively. From the applicat
of the boundary conditions@Eqs.~6! and ~7!# we obtain

R~a,b!5
g12g2

g11g2
, ~25!

T~a,b!5
2g1

g11g2
. ~26!

Note, in particular, thatR andT remain bounded for all rea
values of the slowness parametersa and b, since for the
chosen value ofg1,2 their denominator never vanishes. Su
stitution of Eqs.~22!–~24! into Eq. ~17! leads to representa
tions of û0 , û1, andû2, respectively.

The idea that is central to the modified Cagniard meth
is to transform the Fourier representations of the reflec
and transmitted wave fields@Eqs.~23! and~24!# into expres-
sions of a particular shape such that the transformation f
û(x,y,z,s) to u(x,y,z,t) can be carried out by inspection
3-3
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@Note that, sinces in Eq. ~16! has been chosen to be real a
positive, we cannot rely on Fourier’s integral theorem
this purpose.# Taking into account the algebraic factors ofs
and f (s) in the expressions~22!–~24!, we aim at representa
tions of the type

û~x,y,z,s!5s f̂~s!ĝ~x,y,z,s!, ~27!

in which the system’s Green’s functionĝ can be cast into the
form

ĝ~x,y,z,s!5E
Tarr

`

exp~2st!g~x,y,z,t!dt, ~28!

wheret is a real variable of integration. In view of Lerch’
theorem@19# on the uniqueness of the one-sided Lapla
transformation, the time-domain equivalent of Eq.~27! then
follows as

u~x,y,z,t !

5H 0 for 2`,t,Tarr,

] tE
Tarr

t

f ~ t2t!g~x,y,z,t!dt for Tarr,t,`.

~29!

Evidently, Tarr can be identified as the arrival time of th
relevant wave motion.

A comparison of Eq.~28! with Eqs. ~17! and ~22!–~24!
shows thatt is related toa andb via

i ~ax1by!1g1~z1h!5t ~30!

for the reflected wave, and

i ~ax1by!1g1h2g2z5t ~31!

for the transmitted wave. As a consequence, to reach
goal we have to deviate from the real values ofa and b
occurring in Eq.~17!, which means that analytic continua
tions into complex values are needed. For this, we procee
follows. First, in Eq.~17!, $a,b% are replaced by$z,q% via

a5z cos~u!2q sin~u!,

b5z sin~u!1q cos~u!, ~32!

where x5r cos(u) and y5r sin(u) with 0<r ,`, 0<u
,2p. Under this transformationa21b25z21q2 and
dadb5dzdq, while

ax1by5zr . ~33!

Subject to Eq.~32!, Eq. ~17! transforms into

û~x,y,z,s!5S s

2p D 2E
2`

`

dqE
2`

`

exp~2 i zsr!ũ~z,q,z,s!dz.

~34!

Next, in the inner integral,p5 i z is introduced as the vari
able of integration. This leads to
04660
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û~x,y,z,s!5
s2

4p2i
E

2`

`

dqE
2 i`

i`

` exp~2psr!ũ~z,q,z,s!dp.

~35!

Furthermore, Eq.~21! transforms into

g1,2~p,q!5@V1,2
2 ~q!2p2#1/2 ~36!

with

V1,2~q!5~c1,2
221q2!1/2.0. ~37!

Finally, the integrand in the integral with respect top is
continued analytically into the complexp plane, away from
the imaginary axis. In this procedure, we keep Re(g1,2)
>0, which implies that branch cuts are introduced alo
$Im(p)50,V1,2<uRe(p)u,`%. To arrive at expressions o
the type needed in Eq.~28!, we can now deform the path o
integration in the complexp plane, under the application o
Cauchy’s theorem~which necessitates avoiding crossing t
branch cuts!.

In our further analysis, we will concentrate on obtainin
the spectral diagram of the reflected wave in its depende
on the position of observation and on the on-axis spec
diagrams of the reflected waves as a special case.

IV. THE REFLECTED WAVE IN D1

On using Eqs.~23!, ~32!, and~35! we obtain

û1~x,y,z,s!5
s f̂~s!

4p2i
E

2`

`

dq

3E
2 i`

i`

exp@2s~pr1g1H1!#
R~p,q!

2g1~p,q!
dp,

~38!

where H1[z1h (H1.0) is the vertically traversed dis
tance. The inner integration is along the imaginary axis
the complexp plane. In accordance with Eqs.~30! and ~33!
we deform this path of integration into the modified Cag
iard path

pr1g1H15t, ~39!

with t real and positive. For a fixed value oft, we have
either two complex conjugate solutions forp or two real-
valued ones. The first two are given by

p5H p1
BW~r ,H1 ,q,t!,

p1
BW* ~r ,H1 ,q,t!,

~40!

where

p1
BW5

r

r 21H1
2
t1 i

H1

r 21H1
2 @t22T1

2~q!#1/2

for T1~q!,t,`, ~41!
3-4
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with

T1~q!5~r 21H1
2!1/2V1~q!. ~42!

Here, the superscriptBW indicates body waves. This par
the body-wave part, goes to infinity ast→` and has the
asymptotic form

p1
BW;F r 1 iH 1

r 21H1
2Gt ast→`. ~43!

From Eq.~43! it follows that these solutions can be used
join the original path of integration~the imaginary axis! via
supplementing circular arcs at infinity. In view of Jordan
lemma, the latter yield a vanishing contribution. The point
intersection of the modified Cagniard path$p5p1

BW%ø$p
5p1

BW* % and the realp axis occurs att5T1(q) and is lo-
cated at

p5
rT1~q!

r 21H1
2

. ~44!

In the casec1.c2 @where from Eq.~37! V1(q),V2(q) for
all q# this point lies to the left of the left most branch poi
p5V1(q). Since, furthermore, the integrand is free fro
singularities between the imaginary axis and the modifi
Cagniard path, the integral along the imaginary axis in
~38! can be replaced by the integral along$p5p1

BW%ø$p
5p1

BW* % ~see Fig. 4!.
In the casec1,c2 , V1(q).V2(q) for all q, and devia-

tions from this simple situation may occur. In this respect

FIG. 4. Modified Cagniard path in the complex slowness pla
for c1.c2. Only a body-wave contribution is present. Both t
body-wave part and the asymptote are shown. Dots indicate e
distant time intervals.
04660
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part of the real axis$Im(p)50,2V2(q),Re(p),V2(q)%
comes into play as a second candidate for the modi
Cagniard path. Details of this case will be discussed belo

The casec1Ìc2

As was explained above, in this case the point where
p1

BW contour intersects the real axis lies between 0 and
branch pointV1(q) as defined in Eq.~37!. Therefore, in this
case, only a body-wave contribution exists. Introducingt as
the variable of integration along the modified Cagniard p
$p5p1

BW%ø$p5p1
BW* % in Eq. ~38! leads to

e

ui-

FIG. 5. Modified Cagniard path in the complex slowness pla
for the casec2.c1, and no head-wave contribution. Both the bod
wave part and the asymptote are shown. Dots indicate equidis
time intervals.

FIG. 6. Modified Cagniard path in the complex slowness pla
for the casec2.c1, and a head-wave contribution. The head-wa
part, the body-wave part, and the asymptote are shown. Dots
cate equidistant time intervals.
3-5
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û1~x,y,z,s!5
s f̂~s!

p2 E
0

`

dqE
T1(q)

`

3exp~2st!ImF R~p1
BW,q!

2g1~p1
BW,q!

]p1
BW

]t Gdt,

~45!

where we have used the facts that the integrand is an e
function of q and that the integrand inp satisfies Schwarz’s
reflection principle of complex function theory. Interchan
ing the order of the integrations in Eq.~45! leads to
ly
o
c

t o

th

is

04660
en

û1~x,y,z,s!5
s f̂~s!

p2 E
T1(0)

`

dt

3exp~2st!E
0

A(t)

ImF R~p1
BW,q!

2g1~p1
BW,q!

]p1
BW

]t Gdq,

~46!

from whichA(t) follows, upon using Eqs.~42! and~37! and
T1(0)5(r 21H1

2)1/2/c1, as

A~t!5S t2

r 21H1
2

2
1

c1
2D 1/2

. ~47!

With this, we have arrived at the desired form as expres
by Eqs.~27! and ~28! and the response functiong(x,y,z,t)
follows from Eq.~46! by inspection as
g1~x,y,z,t!5H 0 for 2`,t,T1~0!,

1

p2E0

A(t)

ImF R~p1
BW,q!

2g1~p1
BW,q!

]p1
BW

]t Gdq for T1~0!,t,`.
~48!
l
es.
h

y’s
d by

the

in
Substitution of this Green’s function in Eq.~29! completes
the solution of the reflected field for this case. Evident
T1(0) can be interpreted as the arrival time of the wave up
traveling from the image of the point source in the interfa
to the point of observation inD1.

The casec1Ëc2

Now, two situations can arise, depending on the poin
observation.

~a! The body-wave modified Cagniard path crosses
real p axis to the left ofV2(q). @Note that, sincec2.c1 ,
V2(q),V1(q); see Fig. 5.# For this case the analysis
identical with that for the previous case.

~b! The modified body-wave path ends on the realp axis
on the branch cut associated withV2(q). Inspection of Eq.
~44! shows that this happens in the region of space

Q.Qcrit5arcsin~c1 /c2!, ~49!

where we defined

sin~Q!5
r

~r 21H1
2!1/2

, ~50!

with 0<Q,p/2, and for the finite range inq given by

0,q,
1

cos~Q! S 1

c1
2

sin2~Q!2
1

c2
2D 1/2

5B. ~51!
,
n
e

f

e

@We note that Eq.~49! is the condition for total interna
reflection which accompanies the occurrence of head wav#
Let T1

HW(q) be the value oft corresponding to the branc
point p5V2(q); then

T1
HW~q!5V2~q!r 1S 1

c1
2

2
1

c2
2D 1/2

H1 , ~52!

where we used Eqs.~39! and ~36!. Now, the deformation of
the original path of integration~the imaginary axis! into the
modified Cagniard path under the application of Cauch
theorem requires the body-wave part to be supplemente
a loop around the branch cut associated withV2(q), and
joining the points where the body-wave parts approach
real p axis ~see Fig. 6!. The parametrization of this part in
accordance with Eq.~39! leads to

p1
HW~r ,H1 ,t!

5 lim
d↓0

F r

r 21H1
2
t2

H1

r 21H1
2 @T1

2~q!2t2#1/21 idG
for H1V1~q!,t<T1~q!. ~53!

The superscriptHW denotes head waves@20#. ~An interest-
ing historical account of head waves and their application
seismology is given by Mintrop@21#.! The additional loop is
given by$p5p1

HW%ø$p5p1
HW* %. Introducingt as the vari-

able of integration in Eq.~38! gives
3-6
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û1~x,y,z,s!5
s f̂~s!

p2 E
0

B

dqE
T1

HW(q)

T1(q)

exp~2st!

3ImF R~p1
HW,q!

2g1~p1
HW,q!

]p1
HW

]t Gdt

1
s f̂~s!

p2 E
0

`

dqE
T1(q)

`

3exp~2st!ImF R~p1
BW,q!

2g1~p1
BW,q!

]p1
BW

]t Gdt,

~54!

where we have used the facts that the integrand is an e
function of q and that the integrand inp satisfies Schwarz’s
reflection principle. As before, we interchange the order
fo

-
d

s
he
s,

o
en
el
th
itu
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integration, which for the head-wave contribution of Eq.~54!
yields symbolically

E
0

B

dqE
T1

HW(q)

T1(q)

dt5E
T1

HW(0)

T1(0)

dtE
0

C(t)

dq1E
T1(0)

D

dtE
A(t)

C(t)

dq,

~55!

where

C~t!5H F t

r
2S 1

c1
2

2
1

c2
2D 1/2

H1

r G 2

2
1

c2
2J 1/2

, ~56!

D5S 1

c1
2

2
1

c2
2D 1/2

~r 21H1
2!1/2

cos~Q!
. ~57!

For the body-wave contribution of Eq.~54! we get the result
obtained earlier in Eq.~46!. So, finally,
g1~x,y,z,t!5

¦

0 for 2`,t,T1
HW~0!,

1

p2E0

C(t)

ImF R~p1
HW,q!

2g1~p1
HW,q!

]p1
HW

]t Gdq for T1
HW~0!,t,T1~0!,

1

p2EA(t)

C(t)

ImF R~p1
HW,q!

2g1~p1
HW,q!

]p1
HW

]t Gdq

1
1

p2E0

A(t)

ImF R~p1
BW,q!

2g1~p1
BW,q!

]p1
BW

]t Gdq for T1~0!,t,D,

1

p2E0

A(t)

ImF R~p1
BW,q!

2g1~p1
BW,q!

]p1
BW

]t Gdq for D,t,`.

~58!
the

les
This concludes the calculation of the Green’s function
this case. We observe that, according to Eq.~58!, in the
representation ofg1(x,y,z,t) three break points in time oc
cur. The first,t5T1

HW(0), marks the arrival time of the hea
waves. The second,t5T1(0), marks the arrival of the body
wave. The third,t5D, is induced by the derivation and ha
no straightforward physical interpretation. Note that in t
intervalT1(0),t,D a head-wave contribution still persist
and that in the intervalD,t,` only a body-wave contri-
bution occurs.

V. THE ON-AXIS RESPONSE

For the special case that the point of observation lies
the z axis, i.e., on the line through the point source perp
dicular to the interface, the analysis of the reflected fi
simplifies considerably and an analytic expression of
Green’s function can be obtained. To see this, we subst
x5y50 into Eq.~17! and use Eq.~23!. This leads to
r

n
-

d
e
te

û1~0,0,z,s!5
s f̂~s!

8p2 E2`

` E
2`

`

exp@2sg1~z1h!#

3
R~a,b!

g1~a,b!
dadb. ~59!

We note that in the integrand on the right-hand side
variablesa and b appear in the forma21b2 only. There-
fore, it is now advantageous to introduce the polar variab
of integrationk andc via

a5k cos~c!, ~60!

b5k sin~c!, ~61!

with 0<k,` and 0<c,2p. This yields dadb
5kdkdc, and

g1,2~k!5~c1,2
221k2!1/2, ~62!
3-7



q

e-

ed
s

f
he

e

S. H. WIERSMA, T. D. VISSER, AND A. T. de HOOP PHYSICAL REVIEW E63 046603
R~k!5
g1~k!2g2~k!

g1~k!1g2~k!
, ~63!

where we have used Eqs.~21! and ~25!. With this, Eq.~59!
reduces to

û1~0,0,z,s!5
s f̂~s!

4p E
0

`

exp@2sg1~z1h!#
R~k!

g1~k!
kdk.

~64!

In order to arrive at the desired form as expressed by E
~27! and ~28! we carry out the transformation

g1~k!~z1h!5t, ~65!

with t real and positive. This leads to

k25
t2

~z1h!2
2

1

c1
2

. ~66!

Rewriting all functions in Eq.~64! in terms of their depen-
dence ont yields

û1~0,0,z,s!5
s f̂~s!

4p E
Tarr

`

exp~2st!
R~t!

z1h
dt, ~67!

whereTarr5(z1h)/c1. Evidently,Tarr is the arrival time of
the reflected wave at the point$0,0,z%. In view of Eqs.~27!–
~29! we find that the on-axis Green’s function for the r
flected field is now given by

g1~0,0,z,t !5H 0 for 2`,t,Tarr,

1

4p

R~ t !

z1h
for Tarr,t,`.

~68!

This result for the on-axis Green’s function for the reflect
field may be compared with the one that results upon sub
tuting r 50 into Eq.~34!, i.e.,

FIG. 7. Green’s functiong1(t) for the casec151500 m/s,c2

5330 m/s, and the source located atr 50 m, z50.3 m. Obser-
vation point is atr 51.0 m, z50.1 m. Body-wave arrival time is
at t50.72 ms.
04660
s.

ti-

û1~0,0,z,s!5
s f̂~s!

8p2 E2`

`

dqE
2`

` R@~z21q2!1/2#

g1

3exp@2sg1~z1h!#dz, ~69!

where we have expressed thatR is a function of (z2

1q2)1/2 only. To arrive at the form for the application o
Lerch’s theorem, we replace in the inner integral on t
right-hand side the variablez by t via

g1~z1h!5t. ~70!

This leads to

z5F t2

~z1h!2
2q22

1

c1
2G 1/2

, ~71!

with the Jacobian

]z

]t
5

t

~z1h!2z
. ~72!

Under this transformation, Eq.~69! takes the form

û1~0,0,z,s!5
s f̂~s!

2p2 E0

`

dqE
T0(q)

`

exp~2st!
R~t!

z1h

3F t2

~z1h!2
2q22

1

c1
2G21/2

dt, ~73!

with

T0~q!5~z1h!Fq21
1

c1
2G 1/2

. ~74!

Interchanging the order of integration, we obtain

FIG. 8. Total field u(t) for the case c15500 m/s, c2

5330 m/s. The source is atr 50 m, z50.3 m. Observation point
is atr 51.5 m,z50.05 m. In this case the direct wave arrival tim
T0

dir53.04 ms and the body-wave arrival timeT1(0)53.08 ms.
Source parameters arev052p3103 rad s21, n52, a58.71
3103 s21, t r50.23 ms, andtw50.42 ms.
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û1~0,0,z,s!5
s f̂~s!

2p2~z1h!
E

Tarr

`

exp~2st!R~t!dt

3E
0

Q0(t)

$@Q0~t!#22q2%21/2dq, ~75!

with

Q0~t!5F t2

~z1h!2
2

1

c1
2G 1/2

. ~76!

Through the substitution

q5Q0~t!sin~c! ~77!

it is found that

E
0

Q0(t)

$@Q0~t!#22q2%21/2dq5E
0

p/2

dc5p/2. ~78!

Hence

û1~0,0,z,s!5
s f̂~s!

4p~z1h!
E

Tarr

`

exp~2st!R~t!dt, ~79!

which is the same expression as in Eq.~67!, but obtained in
a different manner. The Green’s function time-domain res
is again given by Eq.~68!.

VI. NUMERICAL RESULTS

The numerical integrations and time convolutions res
ing from the modified Cagniard method were carried o
with the help of routinesD01AJFandC06FKFof the NAG soft-
ware library@22#. First we consider the casec1.c2, which
implies that there are no head waves. An example of
Green’s functiong1(t) as given by Eq.~48! is shown in
Fig. 7. At the body-wave arrival timet5T1(0) it has a jump

FIG. 9. Green’s functiong1(t) for the casec15330 m/s,c2

51500 m/s. The source is atr 50 m, z50.3 m. Observation
point is atr 51 m, z50.1 m. In this case head-wave arrival tim
T1

HW(0)51.8 ms and body-wave arrival timeT1(0)53.3 ms.
04660
lt
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discontinuity and then tends to zero. We note that the fu
tion is negative~positive! when c1.c2 (c1,c2), in agree-
ment with the behavior of the reflection coefficient@Eq.
~25!#. An example of the total field~i.e., the direct plus the
reflected fields! u(t) is given in Fig. 8.

In the previous two examples,c1.c2. Upon interchang-
ing the two wave speeds, head waves may occur. In that
the Green’s functiong1(t) is given by Eq.~58!. An example
is depicted in Fig. 9. At the head-wave arrival timet
5T1

HW(0) the function is continuous and increases to a sh
maximum at the body-wave arrival timet5T1(0). Thetotal
field u(t) for the case when head waves are present is
picted in Fig. 10. The contribution of the head wave
clearly visible before the arrival of the direct wave. When t
point of observation is moved further away from the po
source the separation between the head-wave and the b
wave contributions becomes even more distinct. The cas
point is illustrated in Fig. 11.

FIG. 10. Total field u(t) for the casec15330 m/s, c2

5500 m/s. Source is atr 50 m, z50.3 m. Observation point is
at r 51.5 m, z50.05 m. In this case head-wave arrival tim
T1

HW53.8 ms, direct wave arrival timeT0
dir54.6 ms, and body-

wave arrival timeT1(0)54.7 ms. Source parameters are as
Fig. 8.

FIG. 11. Total field u(t) for the casec15330 m/s, c2

5500 m/s. Source is atr 50 m, z50.3 m. Observation point is
at r 54.5 m,z50.05 m. Notice that the head-wave contribution
separated from the body-wave contribution. In this case head-w
arrival time T1

HW59.79 ms, direct wave arrival timeT0
dir

513.66 ms, and body-wave arrival timeT1(0)513.68 ms.
Source parameters are as in Fig. 8.
3-9
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FIG. 12. Green’s function at a fixed observation point as a function of time, withc2, the wave speed in the second medium, a parame
Source is atr 50 m, z50.3 m. Observation point is atr 50.5 m, z50.1 m. Wave speed in the first medium isc15330 m/s.
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The transition of a Green’s function of the kind given b
Eq. ~48! to one as given by Eq.~58! is shown in Fig. 12.
Here the Green’s function at a fixed point of observation
depicted as a function of time, withc2, the wave speed in the
second medium, a parameter. In the casec2,c1, the Green’s
function is negative and its amplitude decreases asc2 in-
creases. Forc25c1 it vanishes identically. Forc2.c1, its
sign becomes positive and its amplitude becomes larger

FIG. 13. Position of the wave front att52.238 ms for the case
c15330 m/s, c251200 m/s. Source is located atr 50 m, z
50.5 m.
04660
s

th

increasingc2. From a certain value ofc2 onwards—at this
particular observation point—head waves appear. This is
companied by the continuous onset of the Green’s func
prior to the discontinuity associated with the arrival of t
reflected body wave. Also, from the onset of the head wa
on, its arrival time starts to decrease with increasingc2.

An example of the extent of the direct and reflected wa
fronts in the half spaceD1 as calculated with Eqs.~29! and
~58! is shown in Fig. 13. It is noted that the direct wave h
a spherical wave front, whereas the head wave has a co

FIG. 14. Part of the observed normalized power spectrum
on-axis observation. Source is located atr 50 m, z50.25 m, and
the observation point is atr 50 m, z51.25 m. Wave speeds ar
c15250 m/s,c25800 m/s. Resulting time delay between the a
rivals of the direct wave and the reflected wave isDt52 ms. As
mentioned in Sec. VI, the spacing between the minima should
1/Dt50.5 kHz, as is indeed the case. Source parameters arev0

54p3103 rad s21, n52, a58.713103 s21, t r50.23 ms, and
tw50.42 ms.
3-10



n for

REFLECTION-INDUCED SPECTRAL CHANGES OF THE . . . PHYSICAL REVIEW E 63 046603
FIG. 15. Source signal~a! and its normalized power spectrum~b!. Observed signal and its corresponding power spectrum are show
different wave speeds in the second medium. In all casesc15330 m/s, arrival time of the direct wave ist53.05 ms, and arrival time of
the reflected body wave ist53.39 ms. Forc25200 m/s, there are no head waves~c,d!; for c25400 m/s, the head waves arrive att
53.36 ms~e,f!; for c25800 m/s, the head waves arrive att52.63 ms~g,h!; for c251200 m/s, the head waves arrive att52.29 ms~i,j!.
Source parameters arev0/2p523103 rad s21, n52, a58.713103 s21, t r50.23 ms, andtw50.42 ms. Source is located atr
50 m, z50.3 m and the observation point is atr 51.0 m, z50.2 m.
046603-11
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FIG. 16. Source signal~a! and its normalized power spectral density~b!. Observed signal and its corresponding power spectral den
are shown for different observation points in the first medium. Observation point atr 50.2 m, z50.1 m. Head-wave, direct-wave, an
body-wave arrival times are 1.35 ms, 0.86 ms, and 1.36 ms, respectively~c,d!. Observation point atr 50.6 m, z50.1 m. Head-wave,
direct-wave, and body-wave arrival times are 1.85 ms, 1.92 ms, and 2.19 ms, respectively~e,f!. Observation point atr 51.0 m, z
50.1 m. Head-wave, direct-wave, and body-wave arrival times are 2.35 ms, 3.09 ms, and 3.26 ms, respectively~g,h!. In all casesc1

5330 m/s,c25800 m/s. Source is located atr 50 m, z50.3 m. Its parameters are those of Fig. 15.
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wave front. It was verified that the sine of the angle betwe
the head wave front and the interface indeed equalsc1 /c2.

As a further test we examined the observed power sp
trum under on-axis propagation and reflection. The res
shown in Fig. 14, reproduces the well-known effect fro
spectral interferometry@23#: the minima are equally space
and the spacing between them equals 1/Dt, whereDt is the
04660
n

c-
lt,

time delay between the arrival times of the direct field a
the reflected field. The spacing was found to be in excell
agreement with this prediction.

How the observed signal can differ from the signal tha
emitted by the source is illustrated by Fig. 15. The sou
signal and its normalized power spectrum are shown in~a,b!.
The observation point is kept fixed andc2, the wave speed in
3-12
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the medium against which reflection takes place, is var
Changingc2 varies the values of the reflection coefficientR
and the arrival time of~possible! head waves. Even when n
head waves are present~c,d!, the observed normalized powe
spectrum differs significantly from that of the source. Up
increasingc2, the interplay between head wave, body wa
and direct wave alters the shape of the observed signal
its power spectrum even more~e!. It is noted that the maxi-
mum of the power spectrum is no longer at the carrier f
quencyv0/2p ~f!. In the cases~e,f! the head wave arrive
after the direct wave. Upon further increasingc2 the arrival
time of the head waves decreases, and they arrive earlier
the direct wave~g,i!. Also, the indentations in the observe
power spectrum become much more pronounced~h,j!.

The dependence of the observed power spectrum on
position of the point of observation is illustrated in Fig. 1
In this example the source signal and its power spectrum
again those of Fig. 15. Upon changing the point of obser
tion, the arrival times of the direct, head, and body waves
altered. Also, the time delay between them changes. Even
an observation point relatively close to the source~c,d! the
observed power spectrum already differs significantly fr
the source spectrum. When the point of observation is mo
away from the source, the onset of the head wave takes p
earlier~e,g!, and the observed spectra~f,h! deviate even more
from the emitted spectrum~b!.

We emphasize that the spectral changes that we have
culated cannot be attributed to any of the four other mec
nisms that are mentioned in Sec. I but are purely reflec
induced.

VII. SHORT-PULSE APRROXIMATION

For short source pulses, i.e., for pulses whose spatial
tent is small compared to the other spatial distances
volved, we can approximate the body-wave time-domain

FIG. 17. Observed normalized power spectrum according to
modified Cagniard method@solid line, Eq.~48!# and the short-pulse
approximation@dashed line, Eq.~83!#. The point of observation is a
r 50.3 m, z50.05 m. Wave speeds arec15330 m/s, c2

5507 m/s. Source is located atr 50 m, z50.3 m. Its parameters
area536.713103 s21, n56, andv0/2p52 kHz.
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flection function in the final time convolution of the tota
wave motion by its value at the arrival time of the reflect
wave. Correspondingly, the reflected wave function is
proximated by

u1.R~rT1 /R1
2,0!

f ~ t2T1!

4pR1
~80!

~‘‘first-motion approximation’’!, in which R15(r 21H1
2)1/2

is the distance from the point of observation to the image
the source in the reflecting boundary andT15R1 /c1 is the
arrival time of the reflected body wave@cf. Eq. ~44! for q
50#. Together with Eq.~8! we then have

u.
f ~ t2T0!

4pR0
1R~rT1 /R1

2,0!
f ~ t2T1!

4pR1
, ~81!

in which T05R0 /c1 is the arrival time of the direct wave
With this result we have

û~s!. f̂ ~s!Fexp~2sT0!

4pR0
1R~rT1 /R1

2,0!
exp~2sT1!

4pR1
G .
~82!

From this, the quantity needed for the spectral diagram
lows as

uû~ iv!u2.u f̂ ~ iv!u2H S 1

4pR0
D 2

1S R~rT1 /R1
2,0!

4pR1
D 2

12S 1

4pR0
D S R~rT1 /R1

2,0!

4pR1
D cos@v~T12T0!#J .

~83!

It is noted that the short-source-pulse approximation is
accordance with ray-theoretical results in that the pertin
amplitude of the reflected body wave is given by the Fres
reflection coefficient at the reflection point at the boundary
accordance with Snell’s law, while showing the divergen
factor associated with the point source’s image in the bou
ary. As such it is of heuristic value. However, beyond t
range of validity of the relevent approximation the comple
exact theory as developed in this paper has to be used. A
example of such a case, we consider the spectral diagra
the total wave for a source pulse with a pulse time wid
tw50.169 ms. Exact results and the predictions of the sh
source-pulse approximation are shown in Fig. 17. Ev
though the pulse time width is considerably less than
direct-wave arrival time (T0

dir51.18 ms) it is seen that the
short-pulse approximation is in very poor agreement w
the exact result as obtained with the modified Cagni
formalism.

e
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VIII. CONCLUSIONS

We have calculated the effect of reflection on the field
a pulsed point source using the modified Cagniard techniq
It is found that the observed power spectrum can differ s
nificantly from the power spectrum that is emitted by t
source. Both its shape and the position of its maximum a
The observed spectrum depends strongly on the wave s
of the medium in which the source is embedded and tha
tt

-

c

c

04660
f
e.
-

r.
ed

of

the half space at which the field is reflected. Also, the lo
tion of the point of observation affects the spectrum.
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